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Abstract 

 
The volume of biomedical text is growing at a fast rate, creating challenges for humans and 
computer systems alike. One of these challenges arises from the frequent use of novel 
abbreviations in these texts, thus requiring that biomedical lexical ontologies be continually 
updated. In this paper we show that the problem of identifying abbreviations’  definitions can 
be solved with a much simpler algorithm than that proposed by other research efforts. The 
algorithm achieves 96% precision and 82% recall on a standard test collection, which is at least 
as good as existing approaches. It also achieves 95% precision and 82% recall on another, 
larger test set. A notable advantage of the algorithm is that, unlike other approaches, it does not 
require any training data.  

1 Introduction 

There has been an increased interest recently in techniques to automatically extract 
information from biomedical text, and particularly from MEDLINE abstracts.3, 4, 7, 15 
The size and growth rate of biomedical literature creates new challenges for 
researchers who need to keep up to date. One specific issue is the high rate at which 
new abbreviations are introduced in biomedical texts. Existing databases, 
ontologies, and dictionaries must be continually updated with new abbreviations 
and their definitions. In an attempt to help resolve the problem, new techniques 
have been introduced to automatically extract abbreviations and their definitions 
from MEDLINE abstracts.  

In this paper we propose a new, simple, fast algorithm for extraction of 
abbreviations from biomedical text. The scope of the task addressed here is the 
same as the one described in Pustejovsky et al.:14 identify <“short form” , “ long 
form”> pairs where there exists a mapping (of any kind) from characters in the short 
form to characters in the long form.a 

                                                           
a Throughout the paper we use the terms “short form”  and “ long form”  interchangeably with 
“abbreviation”  and “definition” .  We also use the term “short form”  to indicate both abbreviations and 
acronyms, conflating these as have previous authors. 



  

Many abbreviations in biomedical text follow a predictable pattern, in which 
the first letter of each word in the long form corresponds to one letter in the short 
form, as in methyl methanesulfonate sulfate (MMS). However, there are many cases 
in which the correct match between the short form and long form requires words in 
the long form to be skipped, or matching of internal letters in long form words, as in 
Gcn5-related N-acetyltransferase (GNAT). In this paper, we describe a very simple, 
fast algorithm for this problem that achieves both high recall and high precision. 

2 Related Work 

Pustejovsky et al.13, 14 present a solution for identifying abbreviations based on 
hand-built regular expressions and syntactic information to identify boundaries of 
noun phrases. When a noun phrase is found to precede a short form enclosed in 
parentheses, each of the characters within the short form is matched in the long 
form. A score is assigned that corresponds to the number of non-stopwords in the 
long form divided by the number of characters in the short form. If the result is 
below a threshold of 1.5, then the match is accepted. This algorithm achieved 72% 
recall and 98% on “ the gold standard,”  a small, publicly available evaluation corpus 
that this group created, working better than a similar algorithm that does not take 
syntax into account.b 

Pustejovsky et al.13 also summarize some drawbacks of other earlier pattern-
based approaches, noting that the results of Taghva et al.17 look good (98% 
precision and 93% recall on a different test set), but do not account for 
abbreviations whose letters may correspond to a character internal to a definition 
word, a common occurrence in biomedical text. They also find that the Acrophile 
algorithm of Larkey et al.8 does not perform well on the gold standard. 

Chang et al.5 present an algorithm that uses linear regression on a pre-selected 
set of features, achieving 80% precision at a recall level of 83%, and 95% precision 
at 75% recall on the same evaluation collection (this increases to 82% recall and 
99% precision on a corrected version).c Their algorithm uses dynamic programming 
to find potential alignments between short and long form, and uses the results of this 
to compute feature vectors for correctly identified definitions. They then use binary 
logistic regression to train a classifier on 1000 candidate pairs. 

Yeates et al.19 examine acronyms in technical text. They address a more 
difficult problem than some other groups in that their test set includes instances that 
do not have distinct orthographic markers such as parentheses to indicate the 

                                                           
b There are some errors in the gold standard.  The results reported by Pustejovsky et al.13 are on a 
variation of the gold standard with some corrections, but the actual corrections made are not reported in 
the paper.  Unfortunately, the corrections needed on the standard are not standardized. 
c Personal communication, H. Schuetze. 



  

proximity of a definition to an abbreviation (they report that only two thirds of the 
examples take this form). Their algorithm creates a code that indicates the distance 
of the definition words from the corresponding characters in the acronym, and uses 
compression to learn the associations. They compile a large test collection 
consisting of 1080 definitions; training on two thirds and testing on the remainder, 
reporting the results on a precision/recall curve. 

Park and Byrd12 present a rule-based algorithm for extraction of abbreviation 
definitions from general text. The algorithm creates rules on the fly that model how 
the short form can be translated into the long form. They create a set of five 
translation rules, a set of five rules for determining candidate long forms based on 
their length, and a set of six heuristics for determining which definition to choose if 
there are many potential candidates. These are: syntactic cues, rule priority, distance 
between definition and abbreviation, capitalization criteria, number of words in the 
definition, and number of stopwords in the definition. Rule priority is based on how 
often the rule has been applied in the past. They evaluate their algorithm on 177 
abbreviations taken from engineering texts, achieving 98% precision and 95% 
recall. No mention is made of the size and nature of the training set, or whether it 
was distinct from the test set. 

Yu et al.21 present another rule-based algorithm for mapping abbreviations to 
their full forms in biomedical text. Their algorithm is similar to that of Park and 
Byrd. For a given short form, the algorithm extracts all the candidate long forms 
that start with the same character as the short form. The algorithm then tries to 
match the candidate long forms to the short form starting from the shortest long 
form, by iteratively applying 5 pattern-matching rules. The rules include heuristics 
such as prioritizing matching the first character of a word, allowing the use of 
internal letters only if the first letter of a word was matched, and so on. The 
algorithm was evaluated on a small collection of biomedical text containing 62 
matching pairs, achieving 95% precision and 70% recall on average. 

Adar1 presents an algorithm that generates a set of paths through the window of 
text adjacent to an abbreviation (starting from the leftmost character), and scores 
these paths to find the most likely definition. Scoring rules used include “ for every 
abbreviation character that occurs at the start of a definition word, add 1” , and “A 
bonus point is awarded for definitions that are immediately adjacent to the 
parenthesis” . After processing a large set of abbreviation-definition pairs, the results 
are clustered in order to identify spelling variants among the definitions. N-gram 
clustering is coupled with lookup into the MeSH hierarchy to further improve the 
clusters. Performance on a smaller subset of the gold standard yielded 85% recall 
and 94% precision; the author notes that 2 definitions identified by his algorithm 
should have been marked correct in the standard, resulting in a precision of 95%.d 

                                                           
d Results verified through personal communication with the author. 



  

The work described in this paper arose because the authors found difficulties 
making the Park and Byrd algorithm work well on biomedical text. The rules it 
produces are very specific to the format of candidate abbreviations, and so many 
abbreviations were being represented by patterns that had not yet been encountered 
by the algorithm, and thus rule priority was not often applicable. 

The approach closest to the one we present here is the algorithm of Yoshida et 
al.20 Their algorithm assumes that the definition or the abbreviation occurs adjacent 
to parentheses, but their paper does not state how the length of candidate definitions 
is determined. Their algorithm scans words from the end of the abbreviation and 
candidate definition to the beginning, trying at each iteration to find a match for the 
substring of the abbreviation in the definition. The algorithm assumes that in order 
for a character from the abbreviation to be represented in the interior of a word in 
the definition, there must be a match of some other character from the abbreviation 
on the first letter of that word. In addition, characters that match in the interior of 
the word must either be adjacent to one another following that initial letter, or 
adjacent to one another following a syllable boundary. Each iteration of the 
algorithm requires a check to see if a subsequence can be properly formed 
according to these rules. They test this algorithm on a very large collection (they 
had an independent assessor evaluate more that 15,000 categorizations), achieving 
97.5% precision and 95.5% recall. 

Another important processing issue for abbreviations is disambiguation of 
multiple senses of the same short form. Pustejovsky et al.13 describe an algorithm 
that yields abbreviation sense disambiguation accuracies of 98%, and Pakhomov9 
achieves accuracies of 89% on clinical records.  

Yet another issue is normalization of different spellings of the same 
abbreviation. It is difficult to define what it means for two biomedical terms to refer 
to the same concept; Cohen et al.6 provide one set of rules. 

3 M ethods and Implementation 

3.1 Identifying Short Form and Long Form Candidates 

The process of extracting abbreviations and their definitions from medical text is 
composed of two main tasks. The first is the extraction of <short-form, long-form> 
pair candidates from the text. The second task is identifying the correct long form 
from among the candidates in the sentence that surrounds the short form. Most 
approaches, including the one presented here, use a similar method for finding 
candidate pairs. Abbreviation candidates are determined by adjacency to 
parentheses.  



  

The two cases are:   
(i) long form ‘ (‘  short form ‘ )’  

              (ii) short form ‘ (‘  long form ‘ )’   

In practice, most <short form, long form> pairs conform to pattern (i). 
Whenever the expression inside the parentheses includes more than two words, 
pattern (ii) is assumed, and a short form is searched for just before the left 
parenthesis (word boundaries are indicated by spaces). Short forms are considered 
valid candidates only if they consist of at most two words, their length is between 
two to ten characters, at least one of these characters is a letter, and the first 
character is alphanumeric. For simplicity, pattern (i) is assumed in the discussion 
below.  

The next step is to identify candidates for the long form. The long form 
candidate must appear in the same sentence as the short form, and as in Park and 
Byrd12, it should have no more than min(|A| + 5, |A| *  2) words, where |A| is the 
number of characters in the short form.  

Although the algorithm of Park and Byrd allows for an offset between the short 
and long forms, we consider only long forms that are adjacent to the short form. For 
a given short form, a long form candidate is composed of contiguous words from 
the original text that include the word just before the short form.  

3.2 Algorithm for Identifying Correct Long Forms  

When the previous steps are completed there is a list of long form candidate words 
for the short form, and the task is to choose the right subset of words. Figure 1 
presents the code that performs this task. The main idea is: starting from the end of 
both the short form and the long form, move right to left, trying find the shortest 
long form that matches the short form. Every character in the short form must match 
a character in the long form, and the matched characters in the long form must be in 
the same order as the characters in the short form. Any character in the long form 
can match a character in the short form, with one exception: the match of the 
character at the beginning of the short form must match a character in the initial 
position of the first (leftmost) word in the long form (this initial position can be the 
first letter of a word that is connected to other words by hyphens and other non-
alphanumeric characters). 

The implementation in Figure 1 uses two indices, lIndex for the long form, and 
sIndex for the short form. The two indices are initialized to point to the end of their 
respective strings. For each character sIndex points to, lIndex is decremented until a 
matching character is found. If lIndex reaches the beginning of the long form 
candidate  list  before  sIndex  does,  the  algorithm  returns  null  (no  match found).  



  

Figure 1 – Java Code for  Finding the Best Long Form for  a Given Short Form 

/ * *  
Met hod f i ndBest LongFor m t akes as i nput  a shor t - f or m and a l ong-   
f or m candi dat e ( a l i st  of  wor ds)  and r et ur ns t he best  l ong- f or m 
t hat  mat ches t he shor t - f or m,  or  nul l  i f  no mat ch i s f ound.  

* * /   
publ i c St r i ng f i ndBest LongFor m( St r i ng shor t For m,  St r i ng l ongFor m)  {  
 i nt  sI ndex;    / /  The i ndex on t he shor t  f or m 
 i nt  l I ndex;    / /  The i ndex on t he l ong f or m   
 char  cur r Char ;  / /  The cur r ent  char act er  t o mat ch 
 
 sI ndex = shor t For m. l engt h( )  -  1;  / /  Set  sI ndex at  t he end of  t he 
                / /  shor t  f or m 
 l I ndex = l ongFor m. l engt h( )  -  1;   / /  Set  l I ndex at  t he end of  t he 
                / /  l ong f or m 
 f or  (  ;  sI ndex >= 0;  sI ndex- - )  {  / /  Scan t he shor t  f or m st ar t i ng  

/ /  f r om end t o st ar t  
  / /  St or e t he next  char act er  t o mat ch.  I gnor e case 
  cur r Char  = Char act er . t oLower Case( shor t For m. char At ( sI ndex) ) ;  
  / /  i gnor e non al phanumer i c char act er s 
  i f  ( ! Char act er . i sLet t er Or Di gi t ( cur r Char ) )  
   cont i nue;  
  / /  Decr ease l I ndex whi l e cur r ent  char act er  i n t he l ong f or m 
  / /  does not  mat ch t he cur r ent  char act er  i n t he shor t  f or m.  
  / /  I f  t he cur r ent  char act er  i s  t he f i r st  char act er  i n t he 
  / /  shor t  f or m,  decr ement  l I ndex unt i l  a mat chi ng char act er   
    / /  i s  f ound at  t he begi nni ng of  a wor d i n t he l ong f or m.  
  whi l e (  

( ( l I ndex >= 0)  && 
( Char act er . t oLower Case( l ongFor m. char At ( l I ndex) )  ! = cur r Char ) )  
| |  

    ( ( sI ndex == 0)  && ( l I ndex > 0)  && 
( Char act er . i sLet t er Or Di gi t ( l ongFor m. char At ( l I ndex -  1) ) ) ) )  

       l I ndex- - ;  
  / /  I f  no mat ch was f ound i n t he l ong f or m f or  t he cur r ent  

/ /  char act er ,  r et ur n nul l  ( no mat ch) .  
  i f  ( l I ndex < 0)  
   r et ur n nul l ;  
  / /  A mat ch was f ound f or  t he cur r ent  char act er .  Move t o t he 
  / /  next  char act er  i n t he l ong f or m.  
  l I ndex- - ;  
 }  
 / /  Fi nd t he begi nni ng of  t he f i r st  wor d ( i n case t he f i r st   
  / /  char act er  mat ches t he begi nni ng of  a hyphenat ed wor d) .   
 l I ndex = l ongFor m. l ast I ndexOf ( "  " ,  l I ndex)  + 1;  
 / /  Ret ur n t he best  l ong f or m,  t he subst r i ng of  t he or i gi nal  

/ /  l ong f or m,  st ar t i ng f r om l I ndex up t o t he end of  t he or i gi nal   
/ /  l ong f or m.  

 r et ur n l ongFor m. subst r i ng( l I ndex) ;  
}  



  

Otherwise, each time a matching character is found, sIndex and lIndex are 
decremented. When sIndex is at the initial (leftmost) character of the short form, a 
match is considered only if it occurs at the beginning of a word in the long form. 
This is accomplished by decrementing lIndex until it reaches a non-alphanumerical 
character or reaches the beginning of the long form. Only then is the character it is 
pointing to checked for a match against the character sIndex points to (this allows 
for matches in the beginning of the long form just before hyphens). lIndex is then 
decremented until it reaches a space, or the beginning of the long form (whichever 
comes first), in order to include all the words that are connected, usually by 
hyphens, to the leftmost matched word in the long form. Finally, the algorithm 
returns the substring of the original long form, starting from lIndex up to the end of 
the original long form. 

To increase precision, the algorithm discards long forms that are shorter than 
the short form, or that include the short form as one of the words in the long form.e 

To illustrate the algorithm, consider the following pair <HSF, Heat shock 
transcription factor> . The algorithm starts by setting sIndex to point to the end of 
the short form (HSF), and lIndex to point to the end of the long form (factor). It 
then decrements lIndex until a match is found (factor). sIndex is decremented by 
one (HSF). lIndex is decremented until a match is found (transcription). sIndex is 
decremented again (HSF). Since sIndex now points to the beginning of the short 
form, the next match should be found at a beginning of a word in the long form. 
Therefore, lIndex is decremented until a valid match is found (Heat). Note that 
another match was skipped (shock) because it was not in the beginning of a word. 
Also note, that although the algorithm did not match the second character correctly 
(transcription instead of shock) it still found the right long form.  

To illustrate when the algorithm might fail, consider the following example. 
<TTF-1, Thyroid transcription factor 1>. In this case the algorithm finds the 
following wrong match <TTF-1, Thyroid transcription factor 1>. Our experiment 
results show that this kind of error is very rare. 

The algorithm is based on the observation that it is very rare for the first 
character of the short form to match an internal letter of the long form. By adding 
the constraint that the first character of the short form matches the beginning of a 
word in the long form, together with the limitation on the length of the long form, 
the precision is increased by removing most of the false positives, without 
significantly reducing the recall. By contrast, adding additional constraints, as is 
done by most other algorithms, does not seem to help much in terms of precision, 
but can severely reduce the recall. To illustrate this point consider the results of Yu 
et al.21, which is a similar algorithm to ours, but has additional constraints. While 
the precision of both algorithms is very similar, the recall of our algorithm is higher. 

                                                           
e This part of the algorithm is omitted from Figure 1.  



  

4 Evaluation and Results 

To evaluate the algorithm, 1000 MEDLINE abstracts were randomly selected from 
the results of a query on the term “yeast” . These were then hand tagged, producing a 
list of 954 correct <short form, long form> pairs. The algorithm was also tested 
against a publicly available tagged corpus, the Medstract Gold Standard Evaluation 
Corpus,22 which includes 168 <short form, long form> pairs. 

On a corrected version of the gold standard, the algorithm identified 143 pairs. 
Out of these, 137 pairs were correct, resulting in a recall of 82% at precision of 
96%. For comparison, the algorithm described in Chang et al.5 achieved 83% recall 
at 80% precision, and that of Pustejovsky et al.14 achieved 72% recall at 98% 
precision.f 

Analysis of the 6 incorrect pairs reveals that in actuality, 2 of them are correct, 
but were overlooked by the creators of the gold standard.g The other 4 pairs are 
counted as incorrect, since they only partially matched the correct long form. For 
example, the algorithm found the pair <Pol II, polymerase II> instead of <Pol II, 
RNA polymerase II>. Allowing for reasonable partial matches, as was done in 
Chang et al.5 and considering the 2 missing pairs as correct, the precision is 
increased to 99%, and the recall to 84%. 

The algorithm missed 31 pairs: 9 (38%) pairs have skipped characters in the 
short form (e.g. <CNS1, cyclophilin seven suppressor>), 7 (23%) do not have any 
pattern match between the short form and long form (e.g. <5-HT, serotonin>), 5 
(16%) have an out of order match (e.g. <ATN, anterior thalamus>), for 3 (10%) 
pairs the long form includes an additional words to the left of the match resulting in 
a partial match (e.g. <Pol I, RNA polymerase I>), 2 pairs have a short definition 
inside the parenthesis, 2 pairs have the long form inside parenthesis and the short 
form inside nested parenthesis, 1 pair has a comma in the long form, 1 pair has no 
parenthesis, and for 1 pair the algorithm found a wrong partial match (see the 
example at the end of section 3). 

                                                           
f It is important to note that because of the errors in the gold standard these results cannot be accurately 
compared. Each of these evaluations used its own interpretation of the standard, fixing different parts of 
it. In our evaluation, we followed the guidelines of Pustejovsky et al.14 (received through personal 
communication), since they have developed and maintained the standard. We did not include here the 
results of Adar1, since he used a subset of the original gold-standard with only 144 pairs, which did not 
include most of the pairs missed by the other algorithms. 
g The two missing pair are <l'sc,   lethal of scute>, and <cAMP,    3',5' cyclic adenosine monophosphate>. 
The second long form was only partially extracted by the algorithm (without the leading numbers). 



  

On the larger test collection, the algorithms identified 827 pairs. Out of these, 
785 pairs were correct, resulting in a recall of 82% at precision of 95%.h Analysis of 
the 42 incorrect pairs reveals that 17 are completely incorrect, 12 pairs have a 
matched long form that is a superset of the correct long form (this happens when the 
correct mapping includes unused characters, out of order mappings, first-character 
matches to internal letters, or when the first word of the correct long form is 
connected by hyphens to preceding words), 11 are partial matches where the 
extracted long form is a subset of the correct long form (this happens when the 
algorithm is able to match all the characters of the short form to a subset of the long 
form, and when the correct match does not start from the first word of the long 
form), and for 2 pairs the extracted long form includes left brackets that are not part 
of the correct long form. 

Out of the 169 missed pairs, 70 (41%) have unused characters in the short form, 
23 (14%) have an out of order match, 12 (7%) have first-character matches to 
internal letters, 12 (7%) have nested parentheses, 11 (7%) have some kind of 
transformation involved in their mapping (like 2D -> two-dimensional), 11 (7%) 
have partial matches (see above), 5 (3%) have a non-continuous long forms, 4 (2%) 
involve multiple concurrent definitions, 4 (2%) have a short form of only one 
character, and the rest of the pairs, 19 (11%), have miscellaneous issues.  

5 An Alternative Algor ithm 

When we began to investigate the problem of abbreviation definition identification, 
we devised a much more complex algorithm than that presented here. This 
algorithm uses the representation of Park and Byrd12 in combination with a variation 
on the decision lists algorithm, as applied by Yarowsky18 to the lexical ambiguity 
resolution task. The algorithm makes use of training data to rank features that are 
combinations of matching rule transformations.  

Space restrictions prevent detailed description of that algorithm (the interested 
reader should refer to Schwartz and Hearst16 for a complete description of the 
algorithm). However, we found that it performed mildly better than our simple 
algorithm on both training sets, achieving for the gold standard 97% precision and 
82% recall, which is a reduction in error of 17% over the simpler algorithm. For the 
larger test collection, it achieves 96% precision and 82% recall, which is an error 
reduction of 22% over the simpler algorithm. 

                                                           
h The dataset was originally annotated by a graduate student in computational and biosciences. We 
furthered verified the data by comparing any questionable pairs against other occurrences of the same 
abbreviation in other abstracts, using the web site provided by Chang et al.5 A pair extracted by the 
algorithm is considered correct only if it exactly matches a pair labeled in the dataset. 



  

Because the simple algorithm is so much easier to implement and requires no 
training data, we recommend its use, in combination with checking the entire 
dataset for redundancy in definitions in order to further reduce the error rates. 

6 Conclusions 

In this paper we introduced a new algorithm for extracting abbreviations and their 
definitions from biomedical text. Although the algorithm is extremely simple, it is 
highly effective, and is less specific – and therefore less potentially brittle – than 
other approaches that use carefully crafted rules. Although we are staunch advocates 
of machine learning approaches for problems in computational linguistics, it seems 
that in the case of this particular problem, simpler is better. One can argue that the 
problem may vary across collections or languages, and so machine learning can 
help in these cases, but our experience with a machine learning approach to 
sentence boundary determination11 suggests that most practitioners do not want to 
bother with labeling training data for relatively simple tasks.  

Another advantage of the simplicity of the algorithm is its fast running time 
performance. The task of extracting the definition of an abbreviation, is a common 
pre-processing step of larger multi-layered text-mining tasks.1, 10 Therefore, it is 
essential that this step be as efficient as possible. Since our algorithm needs to 
consider only one possible long form per short form, it is much faster than the 
alternative algorithms that first extract many possible long forms and then pick the 
best of them. To provide a rough comparison, using an IBM T21 laptop with a 
single CPU (800 MHz, 256 Mb RAM) running MS-Windows 2000, it takes our 
algorithm about 1 second to process 1000 abstracts, while the algorithm in Chang et 
al.5 using a 5 processor Sun Enterprise E3500 server, processed only 25.5 abstracts 
per second. While our algorithm is clearly I/O bound (running time depends almost 
entirely on the time it takes to read the files from disk, and write the results back to 
the disk), the algorithm of Chang et al. seem to be heavily CPU bound. 

The algorithm performs better or the same as the best results of other work, 
with the possible exception of that of Yoshida et al.20 However, the main advantage 
of the proposed algorithm over the alternatives is its simplicity, and transparency. It 
was implemented with 260 lines of Java code and requires no training data to run. 
The Yoshida et al. algorithm is more complex, in that it requires a module for 
recognizing syllable boundaries, and it performs a substring check at each iteration 
of the loop. 

Analysis of the errors produced indicates that further improvement of the 
algorithm requires the use of syntactic information, as suggested in Pustejovsky et 
al.13 Shallow parsing of the text as a preprocessing step might help correct some of 
the errors inherent in the algorithm, by helping to identify the noun phrases near the 



  

abbreviations. In addition, combining evidence from more than one MEDLINE 
abstract at a time, as was done in Adar2, might also prove to be beneficial for 
increasing both precision and recall. Finally, the algorithm currently only considers 
candidate definitions when the abbreviation is enclosed in parentheses (and vice 
versa); finding all possible pairs is a more difficult problem and requires additional 
study. 
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